What is the shortest wavelength present in the Paschen series of spectral lines?
What is the shortest wavelength present in the Paschen series of spectral lines?

Answer –

Using the Rydberg’s formula, given the relation –

    \[\frac{hc}{\lambda }=21.76\times {{10}^{-19}}[\frac{1}{{{n}_{1}}^{2}}-\frac{1}{{{n}_{2}}^{2}}]\]

Where

h is the Planck’s constant, given = 6.6 × 10-34

c is the speed of the light, given = 3 × 108 m/s

and n1 and n2 are integers.

We know that in the Paschen series of the spectral lines, the shortest wavelength corresponds for the following values –

n1 = 3 and n2 = ∞, from above formula we get –

    \[\frac{hc}{\lambda }=21.76\times {{10}^{-19}}[\frac{1}{{{3}^{2}}}-\frac{1}{{{\infty }^{2}}}]\]

    \[\lambda =\frac{9}{8\times 1.097\times {{10}^{7}}}=102.55nm\]

    \[\lambda =\frac{6.6\times {{10}^{-34}}\times 3\times {{10}^{8}}\times 9}{21.76\times {{10}^{-19}}}\text{= }8.189~\times \text{ }{{10}^{7}}~m\]

    \[\therefore \lambda =818.9nm\]