Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

(i) tan θ/(1-cot θ) + cot θ/(1-tan θ) = 1 + sec θ cosec θ

     [Hint : Write the expression in terms of sin θ and cos θ]

(ii) (1 + sec A)/sec A = sin2A/(1-cos A)  

     [Hint : Simplify LHS and RHS separately]

Solutions:

(i) tan θ/(1-cot θ) + cot θ/(1-tan θ) = 1 + sec θ cosec θ

L.H.S. = tan θ/(1-cot θ) + cot θ/(1-tan θ)

We all know that tan θ =sin θ/cos θ

cot θ = cos θ/sin θ

Now, substitute it in the given equation to simplify it.

= [(sin θ/cos θ)/1-(cos θ/sin θ)] + [(cos θ/sin θ)/1-(sin θ/cos θ)]

= [(sin θ/cos θ)/(sin θ-cos θ)/sin θ] + [(cos θ/sin θ)/(cos θ-sin θ)/cos θ]

= sin2θ/[cos θ(sin θ-cos θ)] + cos2θ/[sin θ(cos θ-sin θ)]

= sin2θ/[cos θ(sin θ-cos θ)] – cos2θ/[sin θ(sin θ-cos θ)]

= 1/(sin θ-cos θ) [(sin2θ/cos θ) – (cos2θ/sin θ)]

= 1/(sin θ-cos θ) × [(sin3θ – cos3θ)/sin θ cos θ]

= [(sin θ-cos θ)(sin2θ+cos2θ+sin θ cos θ)]/[(sin θ-cos θ)sin θ cos θ]

= (1 + sin θ cos θ)/sin θ cos θ

= 1/sin θ cos θ + 1

= 1 + sec θ cosec θ = R.H.S.

So, L.H.S. = R.H.S.

As a result, hence proved

(ii)  (1 + sec A)/sec A = sin2A/(1-cos A)

To simplify the above problem, we first need to simplify the L.H.S. side

L.H.S. = (1 + sec A)/sec A

Because the secant function is the inverse of the cos function and is denoted by

= (1 + 1/cos A)/1/cos A

= (cos A + 1)/cos A/1/cos A

As a result, (1 + sec A)/sec A = cos A + 1

R.H.S. = sin2A/(1-cos A)

We all know that sin2A = (1 – cos2A), as a result we get,

= (1 – cos2A)/(1-cos A)

= (1-cos A)(1+cos A)/(1-cos A)

Therefore, sin2A/(1-cos A)= cos A + 1

L.H.S. = R.H.S.

As a result, hence proved.