Verify that $5,-2$ and $\frac{1}{3}$ are the zeroes of the cubic polynomial $p(x)=\left(3 x^{3}-10 x^{2}-27 x+10\right)$ and verify the relation between its zeroes and coefficients.
Let $\alpha=5$, $\beta=-2$ and $\gamma=\frac{1}{3}$. Then we have:
$(\alpha+\beta+\gamma)=\left(5-2+\frac{1}{3}\right)=\frac{10}{3}=\frac{-\left(\text { coef ficient of } x^{2}\right)}{\left(\text { coefficient of } x^{3}\right)}$
$(\alpha \beta+\beta \gamma+\gamma \alpha)=\left(-10-\frac{2}{3}+\frac{5}{3}\right)=\frac{-27}{3}=\frac{\text { coefficient of } x}{\text { coefficient of } x^{3}}$
$\alpha \beta \gamma=\left\{5 \times(-2) \times \frac{1}{3}\right\}=\frac{-10}{3}=\frac{-(\text { constant term })}{\left(\text { coef ficient of } x^{3}\right)}$