Verify that $5,-2$ and $\frac{1}{3}$ are the zeroes of the cubic polynomial $p(x)=\left(3 x^{3}-10 x^{2}-27 x+10\right)$ and verify the relation between its zeroes and coefficients.
Verify that $5,-2$ and $\frac{1}{3}$ are the zeroes of the cubic polynomial $p(x)=\left(3 x^{3}-10 x^{2}-27 x+10\right)$ and verify the relation between its zeroes and coefficients.
p(x)=3x310x227x+10
p(x)=\left(3 x^{3}-10 x^{2}-27 x+10\right)
p(5)=3×5310×5227×5+10=(375250135+10)=0
p(5)=\left(3 \times 5^{3}-10 \times 5^{2}-27 \times 5+10\right)=(375-250-135+10)=0
p(2)=3×2310×2227×(2)+10=(2440+54+10)=0
p(-2)=\left[3 \times\left(-2^{3}\right)-10 \times\left(-2^{2}\right)-27 \times(-2)+10\right]=(-24-40+54+10)=0
p13=3×13310×13227×13+10=3×12710×199+10
\mathrm{p}\left(\frac{1}{3}\right)=\left\{3 \times\left(\frac{1}{3}\right)^{3}-10 \times\left(\frac{1}{3}\right)^{2}-27 \times \frac{1}{3}+10\right\}=\left(3 \times \frac{1}{27}-10 \times \frac{1}{9}-9+10\right)
=19109+1=11099=09=0
=\left(\frac{1}{9}-\frac{10}{9}+1\right)=\left(\frac{1-10-9}{9}\right)=\left(\frac{0}{9}\right)=0
5,2 and 13 are the zeroes of p(x)
\therefore 5,-2 \text { and } \frac{1}{3} \text { are the zeroes of } p(x) \text {. }

Let $\alpha=5$, $\beta=-2$ and $\gamma=\frac{1}{3}$. Then we have:

$(\alpha+\beta+\gamma)=\left(5-2+\frac{1}{3}\right)=\frac{10}{3}=\frac{-\left(\text { coef ficient of } x^{2}\right)}{\left(\text { coefficient of } x^{3}\right)}$

$(\alpha \beta+\beta \gamma+\gamma \alpha)=\left(-10-\frac{2}{3}+\frac{5}{3}\right)=\frac{-27}{3}=\frac{\text { coefficient of } x}{\text { coefficient of } x^{3}}$

$\alpha \beta \gamma=\left\{5 \times(-2) \times \frac{1}{3}\right\}=\frac{-10}{3}=\frac{-(\text { constant term })}{\left(\text { coef ficient of } x^{3}\right)}$