Answer:
Given,
23n – 7n – 1
23n – 7n – 1 = 8n – 7n – 1
Using binomial theorem,
8n = 7n + 1
8n = (1 + 7) n
8n = nC0 + nC1 (7)1 + nC2 (7)2 + nC3 (7)3 + nC4 (7)2 + nC5 (7)1 + … + nCn (7) n
8n = 1 + 7n + 49 [nC2 + nC3 (71) + nC4 (72) + … + nCn (7) n-2]
8n – 1 – 7n = 49
8n – 1 – 7n is divisible by 49
23n – 1 – 7n is divisible by 49.
Thus, proved.