Solution:
Determining the sample space of the given experiment is $\mathrm{S}=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \Pi\}\}$
(i) Given that, E: tail appears on one coin
And F: one coin shows head
Sample space of events,
$\Rightarrow \mathrm{E}=\{\mathrm{HT}, \mathrm{TH}\}$ and $\mathrm{F}=\{\mathrm{HT}, \mathrm{TH}\}$
$\text{E}\cap \text{F}=\{\text{HT},\text{TH}\}$
The value of probability of events, $P(E)=\frac{2}{4}=\frac{1}{2}, P(F)=\frac{2}{4}=\frac{1}{2}, P(E \cap F)=\frac{2}{4}=\frac{1}{2}$
Now, we know that conditional probability is given by relation:
$P(E \mid F)=\frac{P(E \cap F)}{P(F)}$
Substituting the values, we get
$\Rightarrow \mathrm{P}(\mathrm{E} \mid \mathrm{F})=\frac{1 / 2}{1 / 2}$
$\Rightarrow \mathrm{P}(\mathrm{E} \mid \mathrm{F})=1$
(ii) Given, E: no tail appears
And F: no head appears
Sample space of events,
$\Rightarrow \mathrm{E}=\{\mathrm{HH}\}$ and $\mathrm{F}=\{T \mathrm{~T}\}$
So common sample space,
$\Rightarrow E \cap F=\varphi$
The value of probability of events,
$P(E)=\frac{1}{4}, P(F)=\frac{1}{4}, P(E \cap F)=\frac{0}{4}=0$
Now, we know that conditional probability relation is,
$P(E \mid F)=\frac{P(E \cap F)}{P(F)}$
Substituting the values, we get
$$\Rightarrow \mathrm{P}(\mathrm{E} \mid \mathrm{F})=\frac{0}{1 / 4}$$
$\Rightarrow \mathrm{P}(\mathrm{E} \mid \mathrm{F})=0$