According to ques,
\[S\text{ }=\text{ }n\left( n\text{ }+\text{ }1 \right)\]
Also, \[S\text{ }=\text{ }420\]
So, \[n\left( n\text{ }+\text{ }1 \right)\text{ }=\text{ }420\]
Or,
\[{{n}^{2}}~+\text{ }n\text{ }\text{ }420\text{ }=\text{ }0\]
or,
\[{{n}^{2}}~+\text{ }21n\text{ }\text{ }20n\text{ }\text{ }420\text{ }=\text{ }0\]
or,
\[n\left( n\text{ }+\text{ }21 \right)\text{ }\text{ }20\left( n\text{ }+\text{ }21 \right)\text{ }=\text{ }0\]
or,
\[\left( n\text{ }+\text{ }21 \right)\text{ }\left( n\text{ }\text{ }20 \right)\text{ }=\text{ }0\]
Or,
\[n\text{ }=\text{ }-21,\text{ }20\]
Since, n cannot be negative.
Hence, \[n\text{ }=\text{ }20.\]