The sum and product of the zeroes of a quadratic polynomial are 3 and $-10$ respectively. The quadratic polynomial is (a) $x^{2}-3 x+10$ (b) $x^{2}+3 x-10$ (c) $x^{2}-3 x-10$ (d) $x^{2}+3 x+10$
The sum and product of the zeroes of a quadratic polynomial are 3 and $-10$ respectively. The quadratic polynomial is (a) $x^{2}-3 x+10$ (b) $x^{2}+3 x-10$ (c) $x^{2}-3 x-10$ (d) $x^{2}+3 x+10$

The correct option is option (c) $x^{2}-3 x-10$

Sum of zeroes, $\alpha+\beta=3$

Also, product of zeroes, $\alpha \beta=-10$

$\therefore$ Required polynomial $=\mathrm{x}^{2}-(\alpha+\beta)+\alpha \beta=\mathrm{x}^{2}-3 \mathrm{x}-10$