“If $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ are two polynomials such that degree of $\mathrm{f}(\mathrm{x})$ is greater than degree of $\mathrm{g}(\mathrm{x})$ where $\mathrm{g}(\mathrm{x}) \neq 0$, there exists unique polynomials $\mathrm{q}(\mathrm{x})$ and $\mathrm{r}(\mathrm{x})$ such that
f(x)=g(x)×q(x)+r(x)f(x)=g(x) \times q(x)+r(x)
where $\mathrm{r}(\mathrm{x})=0$ or degree of $\mathrm{r}(\mathrm{x})<$ degree of $\mathrm{g}(\mathrm{x})$