India Site

Solve the following equations: (iii) sin x + sin 5x = sin 3x (iv) cos x cos 2x cos 3x = 1/4

\[\left( \mathbf{iii} \right)~sin\text{ }x\text{ }+\text{ }sin\text{ }5x\text{ }=\text{ }sin\text{ }3x\]

Or,

\[sin\text{ }x\text{ }+\text{ }sin\text{ }5x\text{ }=\text{ }sin\text{ }3x\]

\[sin\text{ }x\text{ }+\text{ }sin\text{ }5x\text{ }\text{ }sin\text{ }3x\text{ }=\text{ }0\]

we shall rearrange and use transformation formula

\[\text{ }sin\text{ }3x\text{ }+\text{ }sin\text{ }x\text{ }+\text{ }sin\text{ }5x\text{ }=\text{ }0\]

Or,

\[\text{ }sin\text{ }3x\text{ }+\text{ }\left( sin\text{ }5x\text{ }+\text{ }sin\text{ }x \right)\text{ }=\text{ }0\]

By using the formula,

\[sin\text{ }A\text{ }+\text{ }sin\text{ }B\text{ }=\text{ }2\text{ }sin\text{ }\left( A+B \right)/2\text{ }cos\text{ }\left( A-B \right)/2\]

\[\text{ }sin\text{ }3x\text{ }+\text{ }2\text{ }sin\text{ }\left( 5x+x \right)/2\text{ }cos\text{ }\left( 5x-x \right)/2\text{ }=\text{ }0\]

\[2sin\text{ }3x\text{ }cos\text{ }2x\text{ }\text{ }sin\text{ }3x\text{ }=\text{ }0\]

Or,

\[sin\text{ }3x\text{ }\left( \text{ }2cos\text{ }2x\text{ }\text{ }1 \right)\text{ }=\text{ }0\]

\[sin\text{ }3x\text{ }=\text{ }sin\text{ }0\text{ }or\text{ }cos\text{ }2x\text{ }=\text{ }{\scriptscriptstyle 1\!/\!{ }_2}\]

or,

\[sin\text{ }3x\text{ }=\text{ }sin\text{ }0\text{ }or\text{ }cos\text{ }2x\text{ }=\text{ }cos\text{ }\pi /3\]

or,

\[3x\text{ }=\text{ }n\pi \text{ }or\text{ }2x\text{ }=\text{ }2m\pi \text{ }\pm \text{ }\pi /3\]

\[x\text{ }=\text{ }n\pi /3\text{ }or\text{ }x\text{ }=\text{ }m\pi \text{ }\pm \text{ }\pi /6\]

∴ the general solution is

\[x\text{ }=\text{ }n\pi /3\text{ }or\text{ }m\pi \text{ }\pm \text{ }\pi /6,\]

where m, n ϵ Z.

\[\left( \mathbf{iv} \right)~cos\text{ }x\text{ }cos\text{ }2x\text{ }cos\text{ }3x\text{ }=\text{ }{\scriptscriptstyle 1\!/\!{ }_4}\]

Or,

\[cos\text{ }x\text{ }cos\text{ }2x\text{ }cos\text{ }3x\text{ }=\text{ }{\scriptscriptstyle 1\!/\!{ }_4}\]

\[4\text{ }cos\text{ }x\text{ }cos\text{ }2x\text{ }cos\text{ }3x\text{ }\text{ }1\text{ }=\text{ }0\]

By using the formula,

\[2\text{ }cos\text{ }A\text{ }cos\text{ }B\text{ }=\text{ }cos\text{ }\left( A\text{ }+\text{ }B \right)\text{ }+\text{ }cos\text{ }\left( A\text{ }\text{ }B \right)\]

\[2\left( 2cos\text{ }x\text{ }cos\text{ }3x \right)\text{ }cos\text{ }2x\text{ }\text{ }1\text{ }=\text{ }0\]

Or,

\[2\left( cos\text{ }4x\text{ }+\text{ }cos\text{ }2x \right)\text{ }cos2x\text{ }\text{ }1\text{ }=\text{ }0\]

\[2\left( 2co{{s}^{2}}~2x\text{ }\text{ }1\text{ }+\text{ }cos\text{ }2x \right)\text{ }cos\text{ }2x\text{ }\text{ }1\text{ }=\text{ }0\]

\[\left[ using\text{ }cos\text{ }2A\text{ }=\text{ }2co{{s}^{2}}A\text{ }\text{ }1 \right]\]

\[4co{{s}^{3}}~2x\text{ }\text{ }2cos\text{ }2x\text{ }+\text{ }2co{{s}^{2}}~2x\text{ }\text{ }1\text{ }=\text{ }0\]

\[2co{{s}^{2}}~2x\text{ }\left( 2cos\text{ }2x\text{ }+\text{ }1 \right)\text{ }-1\left( 2cos\text{ }2x\text{ }+\text{ }1 \right)\text{ }=\text{ }0\]

Or,

\[\left( 2co{{s}^{2}}~2x\text{ }\text{ }1 \right)\text{ }\left( 2\text{ }cos\text{ }2x\text{ }+\text{ }1 \right)\text{ }=\text{ }0\]

So,

\[2cos\text{ }2x\text{ }+\text{ }1\text{ }=\text{ }0\text{ }or\text{ }\left( 2co{{s}^{2}}~2x\text{ }\text{ }1 \right)\text{ }=\text{ }0\]

\[cos\text{ }2x\text{ }=\text{ }-1/2\text{ }or\text{ }cos\text{ }4x\text{ }=\text{ }0\]

\[\left[ using\text{ }cos\text{ }2\theta \text{ }=\text{ }2co{{s}^{2}}\theta \text{ }\text{ }1 \right]\]

\[cos\text{ }2x\text{ }=\text{ }cos\text{ }\left( \pi \text{ }\text{ }\pi /3 \right)\]

or

\[cos\text{ }4x\text{ }=\text{ }cos\text{ }\pi /2\]

\[cos\text{ }2x\text{ }=\text{ }cos\text{ }2\pi /3\]

or

\[cos\text{ }4x\text{ }=\text{ }cos\text{ }\pi /2\]

\[2x\text{ }=\text{ }2m\pi \text{ }\pm \text{ }2\pi /3\]

or

\[4x\text{ }=\text{ }\left( 2n\text{ }+\text{ }1 \right)\text{ }\pi /2\]

\[x\text{ }=\text{ }m\pi \text{ }\pm \text{ }\pi /3\text{ }or\text{ }x\text{ }=\text{ }\left( 2n\text{ }+\text{ }1 \right)\text{ }\pi /8\]

∴ the general solution is

\[x\text{ }=\text{ }m\pi \text{ }\pm \text{ }\pi /3\text{ }or\text{ }\left( 2n\text{ }+\text{ }1 \right)\text{ }\pi /8,\]

where m, n ϵ Z.