As per the inquiry,
We have,
\[\left| z \right|\text{ }=\text{ }z\text{ }+\text{ }1\text{ }+\text{ }2i\]
Subbing z = x + iy, we get,
\[\begin{array}{*{35}{l}}
\Rightarrow \left| x\text{ }+\text{ }iy \right|\text{ }=\text{ }x\text{ }+\text{ }iy\text{ }+\text{ }1\text{ }+\text{ }2i \\
~ \\
\end{array}\]
We realize that,
\[\left| z \right|\text{ }=\text{ }\surd \left( x^2\text{ }+\text{ }y^2 \right)\]
\[\surd \left( x^2\text{ }+\text{ }y^2 \right)\text{ }=\text{ }\left( x\text{ }+\text{ }1 \right)\text{ }+\text{ }i\left( y\text{ }+\text{ }2 \right)\]
Looking at genuine and nonexistent parts,
We get,
\[\surd \left( x^2\text{ }+\text{ }y^2 \right)\text{ }=\text{ }\left( x\text{ }+\text{ }1 \right)\]
Also, 0 = y + 2
⇒ y = – 2
Subbing the worth of y in \[\surd \left( x^2\text{ }+\text{ }y^2 \right)\text{ }=\text{ }\left( x\text{ }+\text{ }1 \right),\]
We get,
\[\Rightarrow x^2\text{ }+\text{ }\left( -\text{ }2 \right)^2\text{ }=\text{ }\left( x\text{ }+\text{ }1 \right)^2\]
\[\Rightarrow x^2\text{ }+\text{ }4\text{ }=\text{ }x^2\text{ }+\text{ }2x\text{ }+\text{ }1\]
Consequently, x = 3/2
Consequently, z = x + iy
= 3/2 – 2i