Solution:
Given R = {(a, b): 2 divides a – b} is a relation defined on Z.
To prove equivalence relation it is necessary that the given relation should be reflexive, symmetric and transitive.
Let us check these properties on R.
Reflexivity:
Let a be an arbitrary element of the set Z.
Then, a ∈ R
⇒ a − a = 0 = 0 × 2
⇒ 2 divides a − a
⇒ (a, a) ∈ R for all a ∈ Z
So, R is reflexive on Z.
Symmetry:
Let (a, b) ∈ R
⇒ 2 divides a − b
⇒ (a-b)/2 = p for some p ∈ Z
⇒ (b-a)/2 = – p
Here, −p ∈ Z
⇒ 2 divides b − a
⇒ (b, a) ∈ R for all a, b ∈ Z
So, R is symmetric on Z
Transitivity:
Let (a, b) and (b, c) ∈ R
⇒ 2 divides a−b and 2 divides b−c
⇒ (a-b)/2 = p and (b-c)/2 = q for some p, q ∈ Z
Adding the above two equations, we get
(a – b)/2 + (b – c)/2 = p + q
⇒ (a – c)/2 = p +q
Here, p+ q ∈ Z
⇒ 2 divides a − c
⇒ (a, c) ∈ R for all a, c ∈ Z
So, R is transitive on Z.
Therefore R is reflexive, symmetric and transitive.
Hence, R is an equivalence relation on Z.