Show that the relation R on the set Z of integers, given by R = {(a, b): 2 divides a – b}, is an equivalence relation.
Show that the relation R on the set Z of integers, given by R = {(a, b): 2 divides a – b}, is an equivalence relation.

Solution:

Given R = {(a, b): 2 divides a – b} is a relation defined on Z.

To prove equivalence relation it is necessary that the given relation should be reflexive, symmetric and transitive.

Let us check these properties on R.

Reflexivity:

Let a be an arbitrary element of the set Z.

Then, a ∈ R

⇒ a − a = 0 = 0 × 2

⇒ 2 divides a − a

⇒ (a, a) ∈ R for all a ∈ Z

So, R is reflexive on Z.

Symmetry:

Let (a, b) ∈ R

⇒ 2 divides a − b

⇒ (a-b)/2 = p for some p ∈ Z

⇒ (b-a)/2 = – p

Here, −p ∈ Z

⇒ 2 divides b − a

⇒ (b, a) ∈ R for all a, b ∈ Z

So, R is symmetric on Z

Transitivity:

Let (a, b) and (b, c) ∈ R

⇒ 2 divides a−b and 2 divides b−c

⇒ (a-b)/2 = p and (b-c)/2 = q for some p, q ∈ Z

Adding the above two equations, we get

(a – b)/2 + (b – c)/2 = p + q

⇒ (a – c)/2 = p +q

Here, p+ q ∈ Z

⇒ 2 divides a − c

⇒ (a, c) ∈ R for all a, c ∈ Z

So, R is transitive on Z.

Therefore R is reflexive, symmetric and transitive.

Hence, R is an equivalence relation on Z.