Radiant flux density is given as
$\vec{S}=\frac{1}{\mu_{0}}\left(\vec{E} \times \vec B\right)=c^{2} \epsilon_{0}\left({\vec{E}} \times \vec B\right)$
$\mathrm{E}=\mathrm{E}_{0} \cos (\mathrm{kx}-\omega \mathrm{t})$
$B=B_{0} \cos (k x-\omega t)$
$E_ B=c^{2} \varepsilon_{0}\left(E_{0} B_{0}\right) \cos ^{2}(k x-\omega t)$
So, the average value of the radiant flux density will be
$S_{av}=\frac{(E_{0})^{2}}{2c\mu_{0}}$