India Site

Prove the following identities: (vii) $cosecB+cotB=(1/(cosecB–cotB))$(viii) $\left( \left( \cos ecB \right)/\left( \cos ecB-1 \right) \right)+\left( \left( \cos ecB \right)/\cos ecB+1 \right)=2{{\sec }^{2}}B$

(vii)

From the question first we consider Left Hand Side (LHS),

$=cosecB+cotB$

Now multiply and divide by $cosecB–cotB$ we get,

$=((cosecB+cotB)/1)((cosecB–cotB)/(cosecB–cotB))$

By cross multiplication we get,

$=\left( \cos e{{c}^{2}}B-{{\cot }^{2}}B \right)/\left( \cos ecB-\cot B \right)$

$=\left( 1+{{\cot }^{2}}B-{{\cot }^{2}}B \right)/\left( \cos ecB-\cot B \right)$

$=(1/(cosecB–cotB))$

Then, Right Hand Side (RHS) $=(1/(cosecB–cotB))$

Therefore, LHS = RHS

(viii)

From the question first we consider Left Hand Side (LHS),

$=((cosecB)/(cosecB–1))+((cosecB)/(cosecB+1))$

By cross multiplication we get,

$\left( \cos e{{c}^{2}}B+\cos ecB+\cos e{{c}^{2}}B-\cos ecB \right)/\left( \cos e{{c}^{2}}B-1 \right)$

We know that, $\cos e{{c}^{2}}B-1={{\cot }^{2}}B$

$=2\cos e{{c}^{2}}B/{{\cot }^{2}}B$

Also we know that, $\cos e{{c}^{2}}B=1/{{\sin }^{2}}B$

$=\left( 2/{{\sin }^{2}}B \right)/\left( {{\cos }^{2}}B/{{\sin }^{2}}B \right)$

$=2/{{\cos }^{2}}B$

$=2{{\sec }^{2}}B$

Then, Right Hand Side (RHS) $=2{{\sec }^{2}}B$

Therefore, LHS = RHS