Prove the following identities: \[\left( \mathbf{sin}\text{ }\mathbf{3x}\text{ }+\text{ }\mathbf{sin}\text{ }\mathbf{x} \right)\text{ }\mathbf{sin}\text{ }\mathbf{x}\text{ }+\text{ }\left( \mathbf{cos}\text{ }\mathbf{3x}\text{ }\text{ }\mathbf{cos}\text{ }\mathbf{x} \right)\text{ }\mathbf{cos}\text{ }\mathbf{x}\text{ }=\text{ }\mathbf{0}\]
Prove the following identities: \[\left( \mathbf{sin}\text{ }\mathbf{3x}\text{ }+\text{ }\mathbf{sin}\text{ }\mathbf{x} \right)\text{ }\mathbf{sin}\text{ }\mathbf{x}\text{ }+\text{ }\left( \mathbf{cos}\text{ }\mathbf{3x}\text{ }\text{ }\mathbf{cos}\text{ }\mathbf{x} \right)\text{ }\mathbf{cos}\text{ }\mathbf{x}\text{ }=\text{ }\mathbf{0}\]

LHS:

\[\left( sin\text{ }3x\text{ }+\text{ }sin\text{ }x \right)\text{ }sin\text{ }x\text{ }+\text{ }\left( cos\text{ }3x\text{ }\text{ }cos\text{ }x \right)\text{ }cos\text{ }x\]

\[=\text{ }\left( sin\text{ }3x \right)\text{ }\left( sin\text{ }x \right)\text{ }+\text{ }si{{n}^{2}}~x\text{ }+\text{ }\left( cos\text{ }3x \right)\text{ }\left( cos\text{ }x \right)\text{ }\text{ }co{{s}^{2}}~x\]

\[=\text{ }\left[ \left( sin\text{ }3x \right)\text{ }\left( sin\text{ }x \right)\text{ }+\text{ }\left( cos\text{ }3x \right)\text{ }\left( cos\text{ }x \right) \right]\text{ }+\text{ }(si{{n}^{2}}~x\text{ }\text{ }co{{s}^{2}}~x)\]

\[=\text{ }\left[ \left( sin\text{ }3x \right)\text{ }\left( sin\text{ }x \right)\text{ }+\text{ }\left( cos\text{ }3x \right)\text{ }\left( cos\text{ }x \right) \right]\text{ }\text{ }(co{{s}^{2}}~x\text{ }\text{ }si{{n}^{2}}~x)\]

From formula, \[~cos\text{ }2x\text{ }=~co{{s}^{2}}~x\text{ }\text{ }si{{n}^{2}}~x\]

\[cos\text{ }A\text{ }cos\text{ }B\text{ }+\text{ }sin\text{ }A\text{ }sin\text{ }B\text{ }=\text{ }cos\left( A\text{ }\text{ }B \right)\]

So,

\[=\text{ }cos\text{ }2x\text{ }\text{ }cos\text{ }2x\]

\[=\text{ }0\]

= RHS

Hence Proved.