India Site

Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is 6√3r.

RD Sharma Solutions for Class 12 Maths Chapter 18 Maxima and Minima Image 81

$QR$ at $X$ and $PR$ at $Z.$

$OZ,$ $OX,$ $OY$ are perpendicular to the sides $PR,$ $QR,$ $PQ.$

Here $PQR$ is an isosceles triangle with sides $PQ = PR$ and also from the figure,

\[\Rightarrow ~PY\text{ }=\text{ }PZ\text{ }=\text{ }x\]

\[\Rightarrow ~YQ\text{ }=\text{ }QX\text{ }=\text{ }XR\text{ }=\text{ }RZ\text{ }=\text{ }y\]

From the figure we can see that,

\[\Rightarrow ~Area\left( \Delta PQR \right)=Area\left( \Delta POR \right)+Area\left( \Delta POQ \right)\]

\[+Area\left( \Delta QOR \right)\]

\[\Rightarrow ~PER\text{ }=\text{ }2\left( \surd 3r \right)\text{ }+\text{ }4\left( \surd 3r \right)\]

\[\Rightarrow ~PER\text{ }=\text{ }6\surd 3r\]

∴ Thus proved