Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is 6√3r.
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is 6√3r.

RD Sharma Solutions for Class 12 Maths Chapter 18 Maxima and Minima Image 81

$QR$ at $X$ and $PR$ at $Z.$

$OZ,$ $OX,$ $OY$ are perpendicular to the sides $PR,$ $QR,$ $PQ.$

Here $PQR$ is an isosceles triangle with sides $PQ = PR$ and also from the figure,

\[\Rightarrow ~PY\text{ }=\text{ }PZ\text{ }=\text{ }x\]

\[\Rightarrow ~YQ\text{ }=\text{ }QX\text{ }=\text{ }XR\text{ }=\text{ }RZ\text{ }=\text{ }y\]

From the figure we can see that,

\[\Rightarrow ~Area\left( \Delta PQR \right)=Area\left( \Delta POR \right)+Area\left( \Delta POQ \right)\]

\[+Area\left( \Delta QOR \right)\]

RD Sharma Solutions for Class 12 Maths Chapter 18 Maxima and Minima Image 82

RD Sharma Solutions for Class 12 Maths Chapter 18 Maxima and Minima Image 83

RD Sharma Solutions for Class 12 Maths Chapter 18 Maxima and Minima Image 84

RD Sharma Solutions for Class 12 Maths Chapter 18 Maxima and Minima Image 85

RD Sharma Solutions for Class 12 Maths Chapter 18 Maxima and Minima Image 86

\[\Rightarrow ~PER\text{ }=\text{ }2\left( \surd 3r \right)\text{ }+\text{ }4\left( \surd 3r \right)\]

\[\Rightarrow ~PER\text{ }=\text{ }6\surd 3r\]

∴ Thus proved