India Site

Prove that: \[\mathbf{cos}\text{ }\mathbf{7}{{\mathbf{8}}^{\mathbf{o}}}~\mathbf{cos}\text{ }\mathbf{4}{{\mathbf{2}}^{\mathbf{o}}}~\mathbf{cos}\text{ }\mathbf{3}{{\mathbf{6}}^{\mathbf{o}}}~=\text{ }\mathbf{1}/\mathbf{8}\]

Let us consider LHS:

\[cos\text{ }{{78}^{o}}~cos\text{ }{{42}^{o}}~cos\text{ }{{36}^{o}}\]

Let us multiply and divide by 2 we get,

\[cos\text{ }{{78}^{o}}~cos\text{ }{{42}^{o}}~cos\text{ }{{36}^{o}}~=\text{ }1/2\text{ }(2\text{ }cos\text{ }{{78}^{o}}~cos\text{ }{{42}^{o}}~cos\text{ }{{36}^{o}})\]

We know, \[2\text{ }cos\text{ }A\text{ }cos\text{ }B\text{ }=\text{ }cos\text{ }\left( A\text{ }+\text{ }B \right)\text{ }+\text{ }cos\text{ }\left( A\text{ }\text{ }B \right)\]

Then the above equation becomes,

\[=\text{ }1/2\text{ }(cos\text{ }({{78}^{o}}~+\text{ }{{42}^{o}})\text{ }+\text{ }cos\text{ }({{78}^{o}}~\text{ }{{42}^{o}}))\text{ }\times \text{ }cos\text{ }{{36}^{o}}\]

\[=\text{ }1/2\text{ }(cos\text{ }{{120}^{o}}~+\text{ }cos\text{ }{{36}^{o}})\text{ }\times \text{ }cos\text{ }{{36}^{o}}\]

\[=\text{ }1/2\text{ }(cos\text{ }({{180}^{o}}~\text{ }{{60}^{o}})\text{ }+\text{ }cos\text{ }{{36}^{o}})\text{ }\times \text{ }cos\text{ }{{36}^{o}}\]

\[=\text{ }1/2\text{ }(-cos\text{ }({{60}^{o}})\text{ }+\text{ }cos\text{ }{{36}^{o}})\text{ }\times \text{ }cos\text{ }{{36}^{o}}~\left[ since,\text{ }cos\left( 180{}^\circ \text{ }\text{ }A \right)\text{ }=\text{ }\text{ }A \right]\]

\[=\text{ }1/2\text{ }\left( -1/2\text{ }+\text{ }\left( \surd 5\text{ }+\text{ }1 \right)/4 \right)\text{ }\left( \left( \surd 5\text{ }+\text{ }1 \right)/4 \right)\text{ }[since,\text{ }cos\text{ }{{36}^{o}}~=\text{ }\left( \surd 5\text{ }+\text{ }1 \right)/4]\]

\[=\text{ }1/2\text{ }\left( \surd 5\text{ }+\text{ }1\text{ }\text{ }2 \right)/4\text{ }\left( \left( \surd 5\text{ }+\text{ }1 \right)/4 \right)\]

\[=\text{ }1/2\text{ }\left( \surd 5\text{ }\text{ }1 \right)/4)\text{ }\left( \left( \surd 5\text{ }+\text{ }1 \right)/4 \right)\]

\[=\text{ }1/2\text{ }({{\left( \surd 5 \right)}^{2}}~\text{ }{{1}^{2}})/16\]

\[=\text{ }1/2\text{ }\left( 5-1 \right)/16\]

\[=\text{ }1/2\text{ }\left( 4/16 \right)\]

\[=\text{ }1/8\]

= RHS

Hence proved.