Prove that : (i) tan 36o + tan 9o + tan 36o tan 9o = 1 (ii) tan 13x – tan 9x – tan 4x = tan 13x tan 9x tan 4x
Prove that : (i) tan 36o + tan 9o + tan 36o tan 9o = 1 (ii) tan 13x – tan 9x – tan 4x = tan 13x tan 9x tan 4x

(i) \[tan\text{ }{{36}^{o}}~+\text{ }tan\text{ }{{9}^{o}}~+\text{ }tan\text{ }{{36}^{o}}~tan\text{ }{{9}^{o}}~=~1\]

We know \[36{}^\circ \text{ }+\text{ }9{}^\circ \text{ }=\text{ }45{}^\circ \]

So we have,

\[tan\text{ }\left( 36{}^\circ \text{ }+\text{ }9{}^\circ  \right)\text{ }=\text{ }tan\text{ }45{}^\circ \]

Since, \[tan\text{}\left(A\text{}+\text{}B\right)\text{}=\text{}\left(tan\text{}A\text{}+\text{}tan\text{}B\right)\text{}/\text{}\left(1\text{}-\text{}tan\text{}A\text{}tan\text{}B\right)\]

Therefore,

\[(tan\text{ }{{36}^{o}}+\text{ }tan\text{ }{{9}^{o}})\text{ }/\text{ }(1\text{}-\text{}tan\text{}{{36}^{o}}tan\text{}{{9}^{o}})\text{}=\text{}1\]

\[tan\text{ }36{}^\circ \text{ }+\text{ }tan\text{ }9{}^\circ \text{ }=\text{ }1\text{}-\text{}tan\text{}36{}^\circ\text{}tan\text{}9{}^\circ\]

Rearanging we get,

\[tan\text{ }36{}^\circ \text{ }+\text{ }tan\text{ }9{}^\circ \text{ }+\text{ }tan\text{ }36{}^\circ \text{ }tan\text{ }9{}^\circ \text{ }=\text{ }1\]

Hence proved.

(ii) \[tan\text{}13x\text{}-\text{}tan\text{}9x\text{}-\text{}tan\text{}4x\text{ }=\text{}tan\text{}13x\text{}tan\text{}9x\text{}tan\text{}4x\]

Let us consider LHS:

\[tan\text{ }13x\text{ }\text{ }tan\text{ }9x\text{ }\text{ }tan\text{ }4x\]

\[tan\text{ }13x\text{ }=\text{ }tan\text{ }\left( 9x\text{ }+\text{ }4x \right)\]

Since, \[tan\text{}\left(A\text{}+\text{}B\right)\text{}=\text{}\left(tan\text{}A\text{}+\text{}tan\text{}B\right)\text{}/\text{}\left(1\text{}-\text{}tan\text{}A\text{}tan\text{}B\right)\]

Therefore,

\[tan\text{}13x\text{}=\text{}\left(tan\text{}9x\text{}+\text{}tan\text{}4x\right)\text{}/\text{}\left(1\text{}-\text{}tan\text{}9x\text{ }tan\text{}4x \right)\]

By cross-multiplying we get,

\[tan\text{}13x\text{}\left(1\text{}-\text{}tan\text{}9x\text{}tan\text{}4x\right)\text{}=\text{}tan\text{}9x\text{}+\text{}tan\text{}4x\]

\[tan\text{ }13x\text{ }-\text{ }tan\text{ }13x\text{ }tan\text{ }9x\text{ }tan\text{ }4x\text{ }=\text{ }tan\text{ }9x\text{ }+\text{ }tan\text{ }4x\]

Upon rearranging we get,

\[tan\text{ }13x\text{ }-\text{ }tan\text{ }9x\text{ }-\text{ }tan\text{ }4x\]

\[=\text{ }tan\text{ }13x\text{ }tan\text{ }9x\text{ }tan\text{ }4x\]

\[=\text{ }RHS\]

\[\therefore LHS\text{ }=\text{ }RHS\]

Hence proved.