Let $A$ be a non-singular matrix of order $3 \times 3$. Then |adj. $A \mid$ is equal to: (A) $|A|$ (B) $|\mathbf{A}|^{2}$ (C) $|\mathbf{A}|^{3}$ (D) $3|\mathrm{~A}|$
Let $A$ be a non-singular matrix of order $3 \times 3$. Then |adj. $A \mid$ is equal to: (A) $|A|$ (B) $|\mathbf{A}|^{2}$ (C) $|\mathbf{A}|^{3}$ (D) $3|\mathrm{~A}|$
Let $A$ be a non-singular matrix of order $3 \times 3$. Then |adj. $A \mid$ is equal to: (A) $|A|$ (B) $|\mathbf{A}|^{2}$ (C) $|\mathbf{A}|^{3}$ (D) $3|\mathrm{~A}|$
The correct answer is Option (B).
Explanation:
$\mid$ adj. $\left.A|=| A\right|^{n-1}=|A|^{2} \quad($ for $n=3)$