Let A = {–3, –1}, B = {1, 3) and C = {3, 5). Find:
(i) A × B
(ii) (A × B) × C
Let A = {–3, –1}, B = {1, 3) and C = {3, 5). Find:
(i) A × B
(ii) (A × B) × C

Answer : (i) Given: A = {-3, -1} and B = {1, 3} To find: A × B

By the definition of the Cartesian product,

Given two non – empty sets P and Q. The Cartesian product P × Q is the set of all ordered pairs of elements from P and Q, .i.e.

P × Q = {(p, q) : p Є P, q Є Q}

Here, A = {-3, -1} and B = {1, 3}. So,

A × B = {-3, -1} × {1, 3}

= {(-3, 1), (-3, 3), (-1, 1), (-1, 3)}

(ii) Given: C = {3, 5}

From part (i), we get A × B = {(-3, 1), (-3, 3), (-1, 1), (-1, 3)}

So,

(A × B) × C = {(-3, 1), (-3, 3), (-1, 1), (-1, 3)} × (3, 5)

= (-3, 1, 3), (-3, 1 , 5), (-3, 3, 3), (-3, 3, 5), (-1, 1, 3), (-1, 1, 5), (-1, 3, 3), (-1, 3, 5)}