Solution:-
(i) From the question it is given that, DE || BC
We have to prove that, ∆ADE and ∆ABC are similar
∠A = ∠A … [common angle for both triangles]
∠ADE = ∠ABC … [because corresponding angles are equal]
Therefore, ∆ADE ~ ∆ABC … [AA axiom]
(ii) From (i) we proved that, ∆ADE ~ ∆ABC
Then, AD/AB = AB/AC = DE/BC
So, AD/(AD + BD) = DE/BC
(½ BD)/ ((½BD) + BD) = DE/4.5
(½ BD)/ ((3/2)BD) = DE/4.5
½ × (2/3) = DE/4.5
1/3 = DE/4.5
Therefore, DE = 4.5/3
DE = 1.5 cm
(iii) From the question it is given that, area of ∆ABC = 18 cm2
Then, area of ∆ADE/area of ∆ABC = DE2/BC2
area of ∆ADE/18 = (DE/BC)2
area of ∆ADE/18 = (AD/AB)2
area of ∆ADE/18 = (1/3)2 = 1/9
area of ∆ADE = 18 × 1/9
area of ∆ADE = 2
So, area of trapezium DBCE = area of ∆ABC – area of ∆ADE
= 18 – 2
= 16 cm2