Solution:
According to the given question,
Given, \[\angle AOB\text{ }=\text{ }{{140}^{o}}~\]and \[\angle OAC\text{ }=\text{ }{{50}^{o}}\]
(i) So,
\[\angle ACB\text{ }=\text{ }{\scriptscriptstyle 1\!/\!{ }_2}\text{ }Reflex\text{ }(\angle AOB)\]
\[=\text{ }{\scriptscriptstyle 1\!/\!{ }_2}\text{ }({{360}^{o}}-\text{ }{{140}^{o}})\text{ }=\text{ }{{110}^{o}}\]
[Angle at the center is double the angle at the circumference subtend by the same chord]
(ii) In quadrilateral \[OBCA,\]
\[\angle OBC\text{ }+\angle ACB\text{ }+\angle OCA\text{ }+\angle AOB\text{ }=\text{ }{{360}^{o}}~\] [Angle sum property of a quadrilateral]
\[\angle OBC\text{ }+\text{ }{{110}^{o}}~+\text{ }{{50}^{o}}~+\text{ }{{140}^{o}}~=\text{ }{{360}^{o}}\]
Hence, \[\angle OBC\text{ }=\text{ }{{360}^{o}}-\text{ }{{300}^{o}}~=\text{ }{{60}^{o}}\]