Solution:
(i) According to the given question, We know that
\[\angle DCE\text{ }=\text{ }{{90}^{o}}~\angle CDE\]
\[=\text{ }{{90}^{o}}-\text{ }{{40}^{o}}~=\text{ }{{50}^{o}}\]
Hence,
\[\angle DEC\text{ }=\angle OCB\text{ }=\text{ }{{50}^{o}}\]
(ii) In \[\vartriangle BOC\], we have
\[\angle AOC\text{ }=\angle OCB\text{ }+\angle OBC\] [Exterior angle property of a triangle]
\[\angle OBC\text{ }=\text{ }{{80}^{o}}-\text{ }{{50}^{o}}~=\text{ }{{30}^{o}}\] [Given ∠AOC = 80o]
Hence, \[\angle ABC\text{ }=\text{ }{{30}^{o}}\]