In the figure given alongside, AB and CD are straight lines through the centre O of a circle. If ∠AOC = 80degree and ∠CDE = 40degree. Find the number of degrees in: (i) ∠DCE; (ii) ∠ABC.
In the figure given alongside, AB and CD are straight lines through the centre O of a circle. If ∠AOC = 80degree and ∠CDE = 40degree. Find the number of degrees in: (i) ∠DCE; (ii) ∠ABC.

Selina Solutions Concise Class 10 Maths Chapter 17 ex. 17(A) - 23

Solution:

(i) According to the given question, We know that

\[\angle DCE\text{ }=\text{ }{{90}^{o}}~\angle CDE\]

\[=\text{ }{{90}^{o}}-\text{ }{{40}^{o}}~=\text{ }{{50}^{o}}\]

Hence,

\[\angle DEC\text{ }=\angle OCB\text{ }=\text{ }{{50}^{o}}\]

(ii) In \[\vartriangle BOC\], we have

\[\angle AOC\text{ }=\angle OCB\text{ }+\angle OBC\] [Exterior angle property of a triangle]

\[\angle OBC\text{ }=\text{ }{{80}^{o}}-\text{ }{{50}^{o}}~=\text{ }{{30}^{o}}\]  [Given ∠AOC = 80o]

Hence, \[\angle ABC\text{ }=\text{ }{{30}^{o}}\]