India Site

In Δ ABC, angle ABC is equal to twice the angle ACB, and bisector of angle ABC meets the opposite side at point P. Show that : (i) CB : BA = CP : PA (ii) AB x BC = BP x CA

Selina Solutions Concise Class 10 Maths Chapter 15 ex. 15(A) - 5

(I) In\[\Delta \text{ }ABC\], we have

\[\angle ABC\text{ }=\text{ }2\angle ACB\][Given]

Presently, let \[\angle ACB\text{ }=\text{ }x\]

In this way, \[\angle ABC\text{ }=\text{ }2x\]

Likewise given, \[BP\] is bisector of \[\angle ABC\]

Subsequently, \[\angle ABP\text{ }=\angle PBC\text{ }=\text{ }x\]

By utilizing the point bisector hypothesis,

for example the bisector of a point isolates the side inverse to it in the proportion of other different sides.

Hence, \[CB:\text{ }BA\text{ }=\text{ }CP:\text{ }PA.\]

 

(ii) In \[\Delta \text{ }ABC\text{ }and\text{ }\Delta \text{ }APB,\]

\[\angle ABC\text{ }=\angle APB\][Exterior point property]

\[\angle BCP\text{ }=\angle ABP\] [Given]

Subsequently, \[\vartriangle ABC\text{ }\sim\text{ }\vartriangle APB\]by \[AA\]standard for comparability

Presently, since relating sides of comparative triangles are corresponding we have

\[CA/AB\text{ }=\text{ }BC/BP\]

Consequently, \[AB\text{ }x\text{ }BC\text{ }=\text{ }BP\text{ }x\text{ }CA\]