$=\int \left\{ \left( x+3 \right)+\frac{7x-6}{\left( x-1 \right)\left( x-2 \right)} \right\}dx$
$=\frac{{{x}^{2}}}{2}+3x+\int \frac{7x-6}{(x-1)(x-2)}dx$
$=\frac{{{x}^{2}}}{2}+3x+{{I}_{1}}……(1)$
Where,
${{I}_{1}}=\int \frac{7x-6}{\left( x-1 \right)\left( x-2 \right)}dx$
Putting $\frac{7x-6}{\left( x-1 \right)\left( x-2 \right)}=\frac{A}{x-1}+\frac{B}{x-2}…..(2)$
$A\left( x-2 \right)+B(x-1)=7x-6$
Now put, $x-2=0$
Therefore, $x=2$
$A\left( 0 \right)+B(2-1)=7\times 2-6$
$B=8$
Now put, $x-1=0$
Therefore, $x=1$
$A(1-2)+B(0)=7-6=1$
$A=-1$
Now from equation (2) we get,
$\frac{7x-6}{(x+1)(x-2)}=\frac{-1}{x-1}+\frac{8}{x-2}$
$I_{1}^{{}}=\int \frac{7x-6}{\left( x-1 \right)\left( x-2 \right)}dx=-\int \frac{1}{x-1}dx+8\int \frac{1}{x-2}dx$
$=-\log \left| x-1 \right|+8\log \left| x-2 \right|+c$
Now from equation (1) we get,
$I=\frac{{{x}^{2}}}{2}+3x-\log \left| x-1 \right|+8\log \left| x-2 \right|+c$