From the question it is given that,
$x=rsinCcosD$
$y=rsinCsinD$
$z=rcosC$
We have to prove that, ${{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{r}^{2}}$
First we consider Left Hand Side (LHS),
${{x}^{2}}+{{y}^{2}}+{{z}^{2}}$
$={{\left( r\sin C\cos D \right)}^{2}}+{{\left( r\sin C\sin D \right)}^{2}}+{{\left( r\cos C \right)}^{2}}$
$={{r}^{2}}{{\sin }^{2}}C{{\cos }^{2}}D+{{r}^{2}}{{\sin }^{2}}C{{\sin }^{2}}D+{{r}^{2}}{{\cos }^{2}}C$
Taking common terms outside we get,
$={{r}^{2}}{{\sin }^{2}}C\left( {{\cos }^{2}}D+{{\sin }^{2}}D \right)+{{r}^{2}}{{\cos }^{2}}C$
$={{r}^{2}}\left( {{\sin }^{2}}C+{{\cos }^{2}}C \right)$
We know that, ${{\sin }^{2}}C+{{\cos }^{2}}C=1$
$={{r}^{2}}$
Then, Right Hand Side $={{r}^{2}}$
Therefore, LHS = RHS
Hence it is proved that, ${{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{r}^{2}}$