If two of the zeroes of the cubic polynomial $a x^{3}+b x^{2}+c x+d$ are 0 , then the third zero is (a) $\frac{-b}{a}$ (b) $\frac{b}{a}$ (c) $\frac{c}{a}$ (d) $\frac{-d}{a}$
If two of the zeroes of the cubic polynomial $a x^{3}+b x^{2}+c x+d$ are 0 , then the third zero is (a) $\frac{-b}{a}$ (b) $\frac{b}{a}$ (c) $\frac{c}{a}$ (d) $\frac{-d}{a}$

The correct option is option (a) $\frac{-b}{a}$

$\alpha, 0$ and 0 be the zeroes of $a x^{3}+b x^{2}+c x+d=0$

Then the sum of zeroes $=\frac{-b}{a}$

$\Rightarrow \alpha+0+0=\frac{-b}{a}$

$\Rightarrow \alpha=\frac{-b}{a}$

Hence, the third zero is $\frac{-b}{a}$.