The correct option is option (c) $1-\mathrm{a}+\mathrm{b}$
$-1$ is a zero of $x^{3}+a x^{2}+b x+c$, we have
$(-1)^{3}+a \times(-1)^{2}+b \times(-1)+c=0$
$\Rightarrow a-b+c+1=0$
$\Rightarrow \mathrm{c}=1-\mathrm{a}+\mathrm{b}$
product of all zeroes is given by
$\alpha \beta \times(-1)=-\mathrm{c}$
$\Rightarrow \alpha \beta=\mathrm{c}$
$\Rightarrow \alpha \beta=1-\mathrm{a}+\mathrm{b}$