If $\alpha, \beta, \gamma$ be the zeroes of the polynomial $\mathrm{x}^{3}-6 \mathrm{x}^{2}-\mathrm{x}+30$, then $(\alpha \beta+\beta \gamma+\gamma \alpha)=?$ (a) $-1$ (b) 1 (c) $-5$ (d) 30
If $\alpha, \beta, \gamma$ be the zeroes of the polynomial $\mathrm{x}^{3}-6 \mathrm{x}^{2}-\mathrm{x}+30$, then $(\alpha \beta+\beta \gamma+\gamma \alpha)=?$ (a) $-1$ (b) 1 (c) $-5$ (d) 30

The correct option is option (a) $-1$

It is given that $\alpha, \beta$ and $\gamma$ are the zeroes of $x^{3}-6 x^{2}-x+30$

$\therefore(\alpha \beta+\beta \gamma+\gamma \alpha)=\frac{\text { co-efficient of } x}{\text { co-efficient of } x^{3}}=\frac{-1}{1}=-1$