If $\alpha, \beta, \gamma$ be the zeroes of the polynomial $2 \mathrm{x}^{3}+\mathrm{x}^{2}-13 \mathrm{x}+6$, then $\alpha \beta \gamma=$ ? (a) $-3$ (b) 3 (c) $\frac{-1}{2}$ (d) $\frac{-13}{2}$
If $\alpha, \beta, \gamma$ be the zeroes of the polynomial $2 \mathrm{x}^{3}+\mathrm{x}^{2}-13 \mathrm{x}+6$, then $\alpha \beta \gamma=$ ? (a) $-3$ (b) 3 (c) $\frac{-1}{2}$ (d) $\frac{-13}{2}$

The correct option is option (a) $-3$

$\alpha, \beta$ and $\gamma$ are the zeroes of $2 \mathrm{x}^{3}+\mathrm{x}^{2}-13 \mathrm{x}+6$, we have:

$\alpha \beta \gamma=\frac{-(\text { constant term })}{\text { co-efficient of } x^{3}}=\frac{-6}{2}=-3$