using the relationship between the zeroes of the quadratic polynomial.
Sum of zeroes $=\frac{-(\text { coef ficient of } x)}{\text { coefficient of } x^{2}}$ and Product of zeroes $=\frac{\text { constant term }}{\text { coef ficient of } x^{2}}$
$\therefore \alpha+\beta=\frac{-(-5)}{1}$ and $\alpha \beta=\frac{k}{1}$
$\Rightarrow \alpha+\beta=5$ and $\alpha \beta=\frac{k}{1}$
Solving $\alpha-\beta=1$ and $\alpha+\beta=5$
$\alpha=3$ and $\beta=2$
Substituting these values in $\alpha \beta=\frac{k}{1}$,
$k=6$