India Site

If a, b, c, d are in G.P., prove that:

(i) (ab – cd) / (b2 – c2) = (a + c) / b

(ii) (a + b + c + d)2 = (a + b)2 + 2(b + c)2 + (c + d)2

Solution:

(i) (ab – cd) / (b2 – c2) = (a + c) / b

According to the question a, b, c are in GP.

Making use of the property of geometric mean, we can write

b2 = ac

bc = ad

c2 = bd

Let us take the LHS: (ab – cd) / (b2 – c2)

$ =\left( ab-cd \right)\text{ }/\text{ }\left( {{b}^{2}}-{{c}^{2}} \right)\text{ } $

$ =\text{ }\left( ab-cd \right)\text{ }/\text{ }\left( ac-bd \right) $

$ =\text{ }\left( ab-cd \right)b\text{ }/\text{ }\left( ac-bd \right)b $

$ =\text{ }\left( a{{b}^{2}}-bcd \right)\text{ }/\text{ }\left( ac-bd \right)b $

$ =\text{ }\left[ a\left( ac \right)-c\left( {{c}^{2}} \right) \right]\text{ }/\text{ }\left( ac-bd \right)b $

$ =\text{ }\left( {{a}^{2}}c-{{c}^{3}} \right)\text{ }/\text{ }\left( ac-bd \right)b $

$ =\text{ }\left[ c\left( {{a}^{2}}-{{c}^{2}} \right) \right]\text{ }/\text{ }\left( ac-bd \right)b $

$ =\text{ }\left[ \left( a+c \right)\text{ }\left( ac-{{c}^{2}} \right) \right]\text{ }/\text{ }\left( ac-bd \right)b $

$ =\text{ }\left[ \left( a+c \right)\text{ }\left( ac-bd \right) \right]\text{ }/\text{ }\left( ac-bd \right)b $

$ =\text{ }\left( a+c \right)\text{ }/\text{ }b $

$ =\text{ }RHS $

∴ LHS = RHS

Hence proved.

(ii) (a + b + c + d)2 = (a + b)2 + 2(b + c)2 + (c + d)2

According to the question a, b, c are in GP.

Making use of the property of geometric mean, we can write

b2 = ac

bc = ad

c2 = bd

Let us consider RHS: (a + b)2 + 2(b + c)2 + (c + d)2

Let us expand

$ ={{\left( a\text{ }+\text{ }b \right)}^{2}}~+\text{ }2{{\left( b\text{ }+\text{ }c \right)}^{2}}~+\text{ }{{\left( c\text{ }+\text{ }d \right)}^{2}}~ $

$ =\text{ }{{\left( a\text{ }+\text{ }b \right)}^{2}}~+\text{ }2\text{ }\left( a+b \right)\text{ }\left( c+d \right)\text{ }+\text{ }{{\left( c+d \right)}^{2}} $

$ =\text{ }{{a}^{2}}~+\text{ }{{b}^{2}}~+\text{ }2ab\text{ }+\text{ }2\left( {{c}^{2}}~+\text{ }{{b}^{2}}~+\text{ }2cb \right)\text{ }+\text{ }{{c}^{2}}~+\text{ }{{d}^{2}}~+\text{ }2cd $

$ =\text{ }{{a}^{2}}~+\text{ }{{b}^{2}}~+\text{ }{{c}^{2}}~+\text{ }{{d}^{2}}~+\text{ }2ab\text{ }+\text{ }2\left( {{c}^{2}}~+\text{ }{{b}^{2}}~+\text{ }2cb \right)\text{ }+\text{ }2cd $

$ =\text{ }{{a}^{2}}~+\text{ }{{b}^{2}}~+\text{ }{{c}^{2}}~+\text{ }{{d}^{2}}~+\text{ }2\left( ab\text{ }+\text{ }bd\text{ }+\text{ }ac\text{ }+\text{ }cb\text{ }+cd \right)\text{ }\left[ Since,\text{ }{{c}^{2}}~=\text{ }bd,\text{ }{{b}^{2}}~=\text{ }ac \right] $

We can easily understand the above expression by making separate terms for (a + b + c)2 + d2 + 2d(a + b + c) = {(a + b + c) + d}2

∴ RHS = LHS

Hence proved.