If A = {1, 2, 3}, B = {4}, C = {5}, then verify that: (iii) A x (B – C) = (A x B) – (A x C)
If A = {1, 2, 3}, B = {4}, C = {5}, then verify that: (iii) A x (B – C) = (A x B) – (A x C)

(iii) A × (B − C) = (A × B) − (A × C)

Let us consider LHS: (B − C)

$ \left( B\text{ }-\text{ }C \right)\text{ }=~\varnothing  $

$ A\text{ }\times \text{ }\left( B\text{ }-\text{ }C \right)\text{ }=\text{ }\left\{ 1,\text{ }2,\text{ }3 \right\}\text{ }\times \varnothing  $

$ A\text{ }\times \text{ }\left( B\text{ }-\text{ }C \right)=~\varnothing  $

Now, RHS

$ \left( A\text{ }\times \text{ }B \right)\text{ }=\text{ }\left\{ 1,\text{ }2,\text{ }3 \right\}\text{ }\times \text{ }\left\{ 4 \right\} $

$ \left( A\text{ }\times \text{ }B \right)=\text{ }\left\{ \left( 1,\text{ }4 \right),\text{ }\left( 2,\text{ }4 \right),\text{ }\left( 3,\text{ }4 \right) \right\} $

$ \left( A\text{ }\times \text{ }C \right)\text{ }=\text{ }\left\{ 1,\text{ }2,\text{ }3 \right\}\text{ }\times \text{ }\left\{ 5 \right\} $

$ \left( A\text{ }\times \text{ }C \right)=\text{ }\left\{ \left( 1,\text{ }5 \right),\text{ }\left( 2,\text{ }5 \right),\text{ }\left( 3,\text{ }5 \right) \right\} $

$ \left( A\text{ }\times \text{ }B \right)\text{ }-\text{ }\left( A\text{ }\times \text{ }C \right)\text{ }=~\varnothing  $

∴ LHS = RHS