The correct option is option (c) $a=-2, b=-6$
$-2$ and 3 are the zeroes of $x^{2}+(a+1) x+b$.
$(-2)^{2}+(a+1) \times(-2)+b=0 \Rightarrow 4-2 a-2+b=0$
$\Rightarrow b-2 a=-2$ ….(1)
$3^{2}+(a+1) \times 3+b=0 \Rightarrow 9+3 a+3+b=0$
$\Rightarrow b+3 a=-12$ $\ldots(2)$
On subtracting (1) from (2), we get $\mathrm{a}=-2$
$\therefore b=-2-4=-6 \quad$ [From (1) $]$