India Site

If 1.202 g mL^{-1}mL−1 is the density of 20% aqueous KI, determine the following:

(a) Molality of KI

(b) Molarity of KI

(c) Mole fraction of KI

(a) Molar mass of $\mathrm{Kl}=39+127=166 \mathrm{~g} \mathrm{~mol}^{-1}$

$20 \%$ aqueous solution of KI shows that $20 \mathrm{~g}$ of $\mathrm{Kl}$ is present in $100 \mathrm{~g}$ of solution.

i.e.,

$20 \mathrm{~g}$ of $\mathrm{Kl}$ is present in $(100-20) \mathrm{g}$ of water $=80 \mathrm{~g}$ of water

Hence, molality of the solution $=\frac{\text { Moles of KI }}{\text { Mass of water in } \mathrm{kg}}$

$=\frac{\frac{20}{166}}{0.08}m$

$=1.506~\text{m}$

$=1.51~\text{m (approx}\text{.) }$

(b) The destiny of the solution is given that $=1.202 g m L^{-1}$

Volume of $100 \mathrm{~g}$ solution $=\frac{\text { Mass }}{\text { Density }}$

$=\frac{100~\text{g}}{1.202~\text{g}~\text{m}{{\text{L}}^{-1}}}$

$=83.19~\text{mL}$

$=83.19 \times 10^{-3} L$

Hence, molarity of the solution $=\frac{\frac{20}{165} \mathrm{~mol}}{83.19 \times 10^{-3} L}$

$=1.45 \mathrm{M}$

(c) Moles of $\mathrm{KI}=\frac{20}{166}=0.12 \mathrm{~mol}$

Moles of water $=\frac{80}{18}=4.44 \mathrm{~mol}$

Hence, mole $=\frac{\text { Moles of } K I}{\text { Moles of } K I+\text { Moles of water }}$

Fraction of $\mathrm{KI}=\frac{0.12}{0.12+4.44}$ $=0.0263$