How many words can be formed with the letters of the word ‘UNIVERSITY,’ the vowels remaining together?
How many words can be formed with the letters of the word ‘UNIVERSITY,’ the vowels remaining together?

Given:

The word \[UNIVERSITY\]

There are \[10\] letters in the word \[UNIVERSITY\] out of which \[2\text{ }are\text{ }Is\]

There are \[4\]vowels in the word \[UNIVERSITY\] out of which \[2\text{ }are\text{ }Is\]

So these vowels can be put together in \[n!/\text{ }\left( p!\text{ }\times \text{ }q!\text{ }\times \text{ }r! \right)\text{ }=\text{ }4!\text{ }/\text{ }2!\] Ways

Let us consider these \[4\] vowels as one letter, remaining \[7\] letters can be arranged in \[7!\] Ways.

Hence, the required number of arrangements \[=\text{ }\left( 4!\text{ }/\text{ }2! \right)\text{ }\times \text{ }7!\]

\[=\text{ }\left( 4\times 3\times 2\times 1\times 7\times 6\times 5\times 4\times 3\times 2\times 1 \right)\text{ }/\text{ }\left( 2\times 1 \right)\]

Or,

\[=\text{ }4\times 3\times 2\times 1\times 7\times 6\times 5\times 4\times 3\]

\[=\text{ }60480\]