$x^{2}+7 x+12=0$
$\Rightarrow x^{2}+4 x+3 x+12=0$
$\Rightarrow x(x+4)+3(x+4)=0$
$\Rightarrow(x+4)(x+3)=0$
$\Rightarrow(x+4)=0$ or $(x+3)=0$
$\Rightarrow \mathrm{x}=-4$ or $\mathrm{x}=-3$
Sum of zeroes $=-4+(-3)=\frac{-7}{1}=\frac{-(\text { coefficient of } x)}{\left(\text { coef ficient of } x^{2}\right)}$
Product of zeroes $=(-4)(-3)=\frac{12}{1}=\frac{\text { constant term }}{\left(\text { coefficient of } x^{2}\right)}$