$f(x)=5 x^{2}-4-8 x$
$=5 x^{2}-8 x-4$
$=5 x^{2}-(10 x-2 x)-4$
$=5 x^{2}-10 x+2 x-4$
$=5 x(x-2)+2(x-2)$
$=(5 x+2)(x-2)$
$\therefore \mathrm{f}(\mathrm{x})=0 \Rightarrow(5 \mathrm{x}+2)(\mathrm{x}-2)=0$
$\Rightarrow 5 x+2=0$ or $x-2=0$
$\Rightarrow \mathrm{x}=\frac{-2}{5}$ or $\mathrm{x}=2$
So, the zeroes of $\mathrm{f}(\mathrm{x})$ are $\frac{-2}{5}$ and 2 .
Sum of zeroes $=\left(\frac{-2}{5}\right)+2=\frac{-2+10}{5}=\frac{8}{5}=\frac{-(\text { coefficient of } x)}{\left(\text { coefficient of } x^{2}\right)}$
Product of zeroes $=\left(\frac{-2}{5}\right) \times 2=\frac{-4}{5}=\frac{\text { constant term }}{\left(\text { coefficient of } x^{2}\right)}$