$f(x)=x^{2}+x-p(p+1)$
adding and subtracting $\mathrm{px}$, we get
$f(x)=x^{2}+p x+x-p x-p(p+1)$
$=x^{2}+(p+1) x-p x-p(p+1)$
$=x[x+(p+1)]-p[x+(p+1)]$
$=[x+(p+1)](x-p)$
$f(x)=0$
$\Rightarrow[\mathrm{x}+(\mathrm{p}+1)](\mathrm{x}-\mathrm{p})=0$
$\Rightarrow[\mathrm{x}+(\mathrm{p}+1)]=0$ or $(\mathrm{x}-\mathrm{p})=0$
$\Rightarrow \mathrm{x}=-(\mathrm{p}+1)$ or $\mathrm{x}=\mathrm{p}$
So, the zeroes of $f(x)$ are $-(p+1)$ and $p$.