$x^{2}-2 x-8=0$
$\Rightarrow \mathrm{x}^{2}-4 \mathrm{x}+2 \mathrm{x}-8=0$
$\Rightarrow x(x-4)+2(x-4)=0$
$\Rightarrow(x-4)(x+2)=0$
$\Rightarrow(x-4)=0$ or $(x+2)=0$
$\Rightarrow x=4$ or $x=-2$
Sum of zeroes $=4+(-2)=2=\frac{2}{1}=\frac{-(\text { coefficient of } x)}{\left(\text { coefficient of } x^{2}\right)}$
Product of zeroes $=(4)(-2)=\frac{-8}{1}=\frac{\text { constant term }}{\left.\text { (coefficient of } x^{2}\right)}$