It is given that
\[tan\text{ }x\text{ }=\text{ }\text{ }5/12\]
We can compose it as
We realize that
\[1\text{ }+\text{ }tan2\text{ }x\text{ }=\text{ }sec2\text{ }x\]
We can compose it as
\[1\text{ }+\text{ }\left( -\text{ }5/12 \right)2\text{ }=\text{ }sec2\text{ }x\]
Subbing the qualities
\[1\text{ }+\text{ }25/144\text{ }=\text{ }sec2\text{ }x\]
\[sec2\text{ }x\text{ }=\text{ }169/144\]
\[sec\text{ }x\text{ }=\text{ }\pm \text{ }13/12\]
Here x lies in the second quadrant so the worth of sec x will be negative
\[sec\text{ }x\text{ }=\text{ }\text{ }13/12\]
We can compose it as