India Site

Find the values of a and b, when:(a – 2, 2b + 1 = (b – 1, a + 2)

Since, the ordered pairs are equal, the corresponding elements are

∴, a – 2 = b – 1 …(i) & 2b + 1 = a + 2 …(ii) Solving eq. (i), we get a – 2 = b – 1

⇒ a – b = -1 + 2

⇒ a – b = 1 … (iii) Solving eq. (ii), we get 2b + 1 = a + 2

⇒ 2b – a = 2 – 1

⇒ -a + 2b = 1 …(iv)

Adding eq. (iii) and (iv), we get a – b + (-a) + 2b = 1 + 1

⇒ a – b – a + 2b = 2

⇒ b = 2

Putting the value of b = 2 in eq. (iii), we get a – 2 = 1

⇒ a = 1 + 2

⇒ a = 3

Hence, the value of a = 3 and b = 2.