Since, the ordered pairs are equal, the corresponding elements are
∴, a – 2 = b – 1 …(i) & 2b + 1 = a + 2 …(ii) Solving eq. (i), we get a – 2 = b – 1
⇒ a – b = -1 + 2
⇒ a – b = 1 … (iii) Solving eq. (ii), we get 2b + 1 = a + 2
⇒ 2b – a = 2 – 1
⇒ -a + 2b = 1 …(iv)
Adding eq. (iii) and (iv), we get a – b + (-a) + 2b = 1 + 1
⇒ a – b – a + 2b = 2
⇒ b = 2
Putting the value of b = 2 in eq. (iii), we get a – 2 = 1
⇒ a = 1 + 2
⇒ a = 3
Hence, the value of a = 3 and b = 2.