(i)\[\mathbf{10}:\text{ }\mathbf{35}\text{ }=\text{ }\mathbf{x}:\text{ }\mathbf{42}\]
We can write it as
\[35\text{ }\times \text{ }x\text{ }=\text{ }10\text{ }\times \text{ }42\]
So we get
\[\begin{array}{*{35}{l}}
x\text{ }=\text{ }\left( 10\text{ }\times \text{ }42 \right)/\text{ }35 \\
x\text{ }=\text{ }2\text{ }\times \text{ }6 \\
x\text{ }=\text{ }12 \\
\end{array}\]
(ii) \[\mathbf{3}:\text{ }\mathbf{x}\text{ }=\text{ }\mathbf{24}:\text{ }\mathbf{2}\]
We can write it as
\[x\text{ }\times \text{ }24\text{ }=\text{ }3\text{ }\times \text{ }2\]
So we get
\[\begin{array}{*{35}{l}}
x\text{ }=\text{ }\left( 3\text{ }\times \text{ }2 \right)/\text{ }24 \\
x\text{ }=\text{ }{\scriptscriptstyle 1\!/\!{ }_4} \\
\end{array}\]