Find the value of x in the following proportions: (i) \[\mathbf{10}:\text{ }\mathbf{35}\text{ }=\text{ }\mathbf{x}:\text{ }\mathbf{42}\] (ii) \[\mathbf{3}:\text{ }\mathbf{x}\text{ }=\text{ }\mathbf{24}:\text{ }\mathbf{2}\]
Find the value of x in the following proportions: (i) \[\mathbf{10}:\text{ }\mathbf{35}\text{ }=\text{ }\mathbf{x}:\text{ }\mathbf{42}\] (ii) \[\mathbf{3}:\text{ }\mathbf{x}\text{ }=\text{ }\mathbf{24}:\text{ }\mathbf{2}\]

(i)\[\mathbf{10}:\text{ }\mathbf{35}\text{ }=\text{ }\mathbf{x}:\text{ }\mathbf{42}\]

We can write it as

\[35\text{ }\times \text{ }x\text{ }=\text{ }10\text{ }\times \text{ }42\]

So we get

\[\begin{array}{*{35}{l}}

x\text{ }=\text{ }\left( 10\text{ }\times \text{ }42 \right)/\text{ }35  \\

x\text{ }=\text{ }2\text{ }\times \text{ }6  \\

x\text{ }=\text{ }12  \\

\end{array}\]

(ii) \[\mathbf{3}:\text{ }\mathbf{x}\text{ }=\text{ }\mathbf{24}:\text{ }\mathbf{2}\]

We can write it as

\[x\text{ }\times \text{ }24\text{ }=\text{ }3\text{ }\times \text{ }2\]

So we get

\[\begin{array}{*{35}{l}}

x\text{ }=\text{ }\left( 3\text{ }\times \text{ }2 \right)/\text{ }24  \\

x\text{ }=\text{ }{\scriptscriptstyle 1\!/\!{ }_4}  \\

\end{array}\]