Quadratic is a type of problem which deals with a variable multiplied by itself- an operation also known as squaring.
Solution:
Given equation,
$2{{x}^{2}}+x-4=0$
$2\left( {{x}^{2}}+\frac{x}{2}-\frac{4}{2} \right)=0$
${{x}^{2}}+2\times \frac{1}{2}\times \frac{1}{2}\times x-2=0$
${{x}^{2}}+2\times \frac{1}{4}\times x+{{\left( \frac{1}{4} \right)}^{2}}-{{\left( \frac{1}{4} \right)}^{2}}-2=0$
${{\left( x+\frac{1}{4} \right)}^{2}}={{\left( \frac{1}{4} \right)}^{2}}+2$
${{\left( x+\frac{1}{4} \right)}^{2}}=\frac{1}{16}+2$
${{\left( x+\frac{1}{4} \right)}^{2}}=\frac{1+2\times 16}{16}$
${{\left( x+\frac{1}{4} \right)}^{2}}=\frac{1+32}{16}$
${{\left( x+\frac{1}{4} \right)}^{2}}=\frac{33}{16}$
$\left( X+\frac{1}{4} \right)=\pm \sqrt{\frac{33}{16}}$
$\left( x+\frac{1}{4} \right)=\sqrt{\frac{33}{16}}$
or $\left( x+\frac{1}{4} \right)=-\sqrt{\frac{33}{16}}$
$x=\frac{\sqrt{33}}{4}-\frac{1}{4}orx=-\frac{\sqrt{33}}{4}-\frac{1}{4}$
$x=\frac{\sqrt{33}-1}{4}orx=\frac{\sqrt{33}-1}{4}$
$x=\frac{\sqrt{33}-1}{4}orx=\frac{-\sqrt{33}-1}{4}$
$2\left( {{x}^{2}}+\frac{x}{2}-\frac{4}{2} \right)=0$
${{x}^{2}}+2\times \frac{1}{2}\times \frac{1}{2}\times x-2=0$
${{x}^{2}}+2\times \frac{1}{4}\times x+{{\left( \frac{1}{4} \right)}^{2}}-{{\left( \frac{1}{4} \right)}^{2}}-2=0$
${{\left( x+\frac{1}{4} \right)}^{2}}={{\left( \frac{1}{4} \right)}^{2}}+2$
${{\left( x+\frac{1}{4} \right)}^{2}}=\frac{1}{16}+2$
${{\left( x+\frac{1}{4} \right)}^{2}}=\frac{1+2\times 16}{16}$
${{\left( x+\frac{1}{4} \right)}^{2}}=\frac{1+32}{16}$
${{\left( x+\frac{1}{4} \right)}^{2}}=\frac{33}{16}$
$\left( x+\frac{1}{4} \right)=\pm \sqrt{\frac{33}{16}}$
$\left( x+\frac{1}{4} \right)=\sqrt{\frac{33}{16}}$
or $\left( x+\frac{1}{4} \right)=-\sqrt{\frac{33}{16}}$
$x=\frac{\sqrt{33}}{4}-\frac{1}{4}orx=-\frac{\sqrt{33}}{4}-\frac{1}{4}$
$x=\frac{\sqrt{33}-1}{4}orx=-\frac{\sqrt{33}-1}{4}$
Thus, the roots of the given quadratic equation are