Let $\alpha=\frac{2}{3}$ and $\beta=\frac{-1}{4}$.
Sum of the zeroes $=(\alpha+\beta)=\frac{2}{3}+\left(\frac{-1}{4}\right)=\frac{8-3}{12}=\frac{5}{12}$
Product of the zeroes, $\alpha \beta=\frac{2}{3} \times\left(\frac{-1}{4}\right)=\frac{-2}{12}=\frac{-1}{6}$
$\therefore$ Required polynomial $=\mathrm{x}^{2}-(\alpha+\beta) \mathrm{x}+\alpha \beta=\mathrm{x}^{2}-\frac{5}{12} \mathrm{x}+\left(\frac{-1}{6}\right)$ $=x^{2}-\frac{5}{12} x-\frac{1}{6}$
Sum of the zeroes $=\frac{5}{12}=\frac{-(\text { coefficient of } x)}{\left(\text { coef ficient of } x^{2}\right)}$
Product of zeroes $=\frac{-1}{6}=\frac{\text { constant term }}{\left(\text { coef ficient of } x^{2}\right)}$