Find the quadratic polynomial, sum of whose zeroes is 8 and their product is $12 .$ Hence, find the zeroes of the polynomial.
Find the quadratic polynomial, sum of whose zeroes is 8 and their product is $12 .$ Hence, find the zeroes of the polynomial.

Let $\alpha$ and $\beta$ be the zeroes of the required polynomial $\mathrm{f}(\mathrm{x})$.

Then $(\alpha+\beta)=8$ and $\alpha \beta=12$

$\therefore f(x)=x^{2}-(\alpha+\beta) x+\alpha \beta$

$\Rightarrow f(x)=x^{2}-8 x+12$

Hence, required polynomial $f(x)=x^{2}-8 x+12$

$\therefore f(x)=0 \Rightarrow x^{2}-8 x+12=0$

x2(6x+2x)+12=0
\Rightarrow \mathrm{x}^{2}-(6 \mathrm{x}+2 \mathrm{x})+12=0
x26x2x+12=0
\Rightarrow x^{2}-6 x-2 x+12=0
x(x6)2(x6)=0
\Rightarrow x(x-6)-2(x-6)=0
(x2)(x6)=0
\Rightarrow(x-2)(x-6)=0
(x2)=0 or (x6)=0
\Rightarrow(x-2)=0 \text { or }(x-6)=0

 

x=2 or x=6
\Rightarrow \mathrm{x}=2 \text { or } \mathrm{x}=6

So, the zeroes of $\mathrm{f}(\mathrm{x})$ are 2 and 6 .