Find the quadratic polynomial, sum of whose zeroes is 8 and their product is $12 .$ Hence, find the zeroes of the polynomial.
Let $\alpha$ and $\beta$ be the zeroes of the required polynomial $\mathrm{f}(\mathrm{x})$.
Then $(\alpha+\beta)=8$ and $\alpha \beta=12$
$\therefore f(x)=x^{2}-(\alpha+\beta) x+\alpha \beta$
$\Rightarrow f(x)=x^{2}-8 x+12$
Hence, required polynomial $f(x)=x^{2}-8 x+12$
$\therefore f(x)=0 \Rightarrow x^{2}-8 x+12=0$
So, the zeroes of $\mathrm{f}(\mathrm{x})$ are 2 and 6 .