Find the points of local maxima or local minima and corresponding local maximum and local minimum values of each of the following functions. Also, find the points of inflection, if any: (i) f(x) = (x – 1) (x + 2)^2 (ii) f (x) = 2/x – 2/x^2, x > 0
Find the points of local maxima or local minima and corresponding local maximum and local minimum values of each of the following functions. Also, find the points of inflection, if any: (i) f(x) = (x – 1) (x + 2)^2 (ii) f (x) = 2/x – 2/x^2, x > 0

(i) Given $f(x)=(x-1)(x+2)^{2}$
$
\begin{array}{l}
\therefore \mathrm{f}(\mathrm{x})=(\mathrm{x}+2)^{2}+2(\mathrm{x}-1)(\mathrm{x}+2) \\
=(\mathrm{x}+2)(\mathrm{x}+2+2 \mathrm{x}-2) \\
=(\mathrm{x}+2)(3 \mathrm{x})
\end{array}
$
And $f^{\prime}(x)=3(x+2)+3 x$
$
=6 x+6
$
For maxima and minima, $f(x)=0$
$
(x+2)(3 x)=0
$
So roots will be $\mathrm{x}=0,-2$
Now, $f^{\prime}(0)=6>0$
$x=0$ is point of local minima
$
f(-2)=-6<0
$
$x=-2$ is point of local maxima
Local maxima value $=f(-2)=0$ and local minima value $=f(0)=-4$

(ii)

RD Sharma Solutions for Class 12 Maths Chapter 18 Maxima and Minima Image 3

\[-2/{{x}^{2}}~+\text{ }4/{{x}^{3}}~=\text{ }0\]

\[-2\left( x\text{ }-\text{ }2 \right)/{{x}^{3}}~=\text{ }0\]

\[\Rightarrow \text{ }\left( x\text{ }-\text{ }2 \right)\text{ }=\text{ }0\]

\[\Rightarrow \text{ }x\text{ }=\text{ }2\]

Now,

\[f\left( 2 \right)\text{ }=\text{ }4/8\text{ }-\text{ }12/16\text{ }=\text{ }{\scriptscriptstyle 1\!/\!{ }_2}\text{ }-\text{ }{\scriptscriptstyle 3\!/\!{ }_4}\text{ }=\text{ }-\text{ }{\scriptscriptstyle 1\!/\!{ }_4}\text{ }<\text{ }0\]

RD Sharma Solutions for Class 12 Maths Chapter 18 Maxima and Minima Image 4