$\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5\end{array}\right]$
Solution:
Let $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5\end{array}\right]$
$|A|=\left|\begin{array}{lll}1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5\end{array}\right|=1(10)-2(0)+3(0)=10 \neq 0$
Therefore,
$A^{-1}$ exists
A11 = , A12 = ,
A13 = , A21 = ,
A22 = , A23 = ,
A31 = , A32 = ,
A33 =
adj. A =