We realize that the vertex is \[\left( 0,\text{ }0 \right)\]and the hub of the parabola is the \[y-axis\]
The condition of the parabola is both of the from \[{{x}^{2~}}=\text{ }4ay\text{ }or\text{ }{{x}^{2}}~=\text{ }-4ay\].
Considering that the parabola goes through point \[\left( 5,\text{ }2 \right)\]which lies in the principal quadrant.
Along these lines, the condition of the parabola is of the structure\[{{x}^{2}}~=\text{ }4ay\], while point \[\left( 5,\text{ }2 \right)\]should fulfill the condition \[~{{x}^{2}}~=\text{ }4ay.\]
Then, at that point,
\[\begin{array}{*{35}{l}}
{{5}^{2}}~=\text{ }4a\left( 2 \right) \\
25\text{ }=\text{ }8a \\
a\text{ }=~25/8 \\
\end{array}\]
Consequently, the condition of the parabola is
\[\begin{array}{*{35}{l}}
{{x}^{2}}~=\text{ }4\text{ }\left( 25/8 \right)y \\
{{x}^{2}}~=\text{ }25y/2 \\
2{{x}^{2}}~=\text{ }25y \\
\end{array}\]
∴ The condition of the parabola is \[2{{x}^{2}}~=\text{ }25y\]