Given: \[\mathbf{\theta }\text{ }=\text{ }\mathbf{30}{}^\circ \]
We realize that incline, \[\mathbf{m}\text{ }=\text{ }\mathbf{tan}\text{ }\mathbf{\theta }\]
\[\mathbf{m}\text{ }=\text{ }\mathbf{tan30}{}^\circ \text{ }=\text{ }\left( \mathbf{1}/\surd \mathbf{3} \right)\]
We realize that the point (x, y) on the line with incline m and y-catch c lies on the line if and provided that \[\mathbf{y}\text{ }=\text{ }\mathbf{mx}\text{ }+\text{ }\mathbf{c}.\]
In case distance is 2 units over the beginning, \[\mathbf{c}\text{ }=\text{ }+\mathbf{2}\]
Thus, \[\mathbf{y}\text{ }=\text{ }\left( \mathbf{1}/\surd \mathbf{3} \right)\mathbf{x}\text{ }+\text{ }\mathbf{2}\]
\[\mathbf{y}\text{ }=\text{ }\left( \mathbf{x}\text{ }+\text{ }\mathbf{2}\surd \mathbf{3} \right)/\surd \mathbf{3}\]
\[\surd \mathbf{3}\text{ }\mathbf{y}\text{ }=\text{ }\mathbf{x}\text{ }+\text{ }\mathbf{2}\surd \mathbf{3}\]
\[\mathbf{x}\text{ }\text{ }\surd \mathbf{3}\text{ }\mathbf{y}\text{ }+\text{ }\mathbf{2}\surd \mathbf{3}\text{ }=\text{ }\mathbf{0}\]
∴ The condition of the line is \[\mathbf{x}\text{ }\text{ }\surd \mathbf{3}\text{ }\mathbf{y}\text{ }+\text{ }\mathbf{2}\surd \mathbf{3}\text{ }=\text{ }\mathbf{0}.\]